6,751 research outputs found

    Reliable network design under supply uncertainty with probabilistic guarantees

    Get PDF
    This paper proposes a bi-level risk-averse network design model for transportation networks with heterogeneous link travel time distributions. The objective of the network design is to minimise the total system travel time (TSTT) budget (TSTTB), which consists of the mean TSTT and a safety margin. The design is achieved by selecting optimal link capacity expansions subject to a fixed expansion budget. Users’ selfish behaviour and risk attitude are captured in the lower level traffic assignment constraints, in which travellers select routes to minimise their own path travel time budget. The properties of the design problem are analysed analytically and numerically. The analysis shows that despite the lack of knowledge of travel time distributions, the probabilities that the actual TSTT and the actual path travel time are, respectively, within the optimal TSTTB and the minimum path travel time budget under optimal design have lower bounds. The lower bounds are related to the system manager's and travellers’ risk aversion. The optimal TSTTB is proven to be bounded below even when the link expansion budget is unlimited.postprin

    Price of anarchy for reliability-based traffic assignment and network design

    Get PDF
    postprin

    Order parameter and current-phase relation in Josephson junctions composed of g+s-wave superconductors

    Get PDF
    Based on the analyses of bulk sensitive experimental data on penetration depths, Raman spectra, electron photoemission spectra, etc., G. M. Zhao concluded in a recent paper [Phys. Rev. B 64, 024503 (2001)] that the symmetry of high-Tc superconductors belongs to the g+s-wave type. To explore the common and uncommon features of the g+s-wave pairing state with respect to the d-wave pairing state, both superconductor-insulator-superconductor junction and superconductor-normal metal-superconductor junction have been studied self-consistently in this paper using the quasiclassical theory. The current phase relation for g+s-wave superconductors Δ(s,θ)=Δ0(s+cos 4θ) is investigated systematically as functions of s-wave component, crystal orientation angle β, as well as roughness ρ of the interface layer. Our results show that there exists a critical βC for a given s and ρ so that the current phase relation approaches asymptotically to I(φ)=ICsin(2φ) from I(φ)=ICsin(φ) as β→βC. The order parameter and βC-s relation are calculated self-consistently as interface roughness varies. Our results are compared with their counterparts in Josephson junctions with the d-wave pairing state obtained using a similar method.published_or_final_versio

    A novel discrete network design problem formulation and its global optimization solution algorithm

    Get PDF
    Conventional discrete transportation network design problem deals with the optimal decision on new link addition, assuming the capacity of each candidate link addition is predetermined and fixed. In this paper, we address a novel yet general discrete network design problem formulation that aims to determine the optimal new link addition and their optimal capacities simultaneously, which answers the questions on whether a new link should be added or not, and if added, what should be the optimal link capacity. A global optimization method employing linearization, outer approximation and range reduction techniques is developed to solve the formulated model.postprin

    Increasing external effects negate local efforts to control ozone air pollution: a case study of Hong Kong and implications for other Chinese cities.

    Get PDF
    It is challenging to reduce ground-level ozone (O3) pollution at a given locale, due in part to the contributions of both local and distant sources. We present direct evidence that the increasing regional effects have negated local control efforts for O3 pollution in Hong Kong over the past decade, by analyzing the daily maximum 8 h average O3 and Ox (=O3+NO2) concentrations observed during the high O3 season (September-November) at Air Quality Monitoring Stations. The locally produced Ox showed a statistically significant decreasing trend over 2002-2013 in Hong Kong. Analysis by an observation-based model confirms this decline in in situ Ox production, which is attributable to a reduction in aromatic hydrocarbons. However, the regional background Ox transported into Hong Kong has increased more significantly during the same period, reflecting contributions from southern/eastern China. The combined result is a rise in O3 and a nondecrease in Ox. This study highlights the urgent need for close cross-boundary cooperation to mitigate the O3 problem in Hong Kong. China's air pollution control policy applies primarily to its large cities, with little attention to developing areas elsewhere. The experience of Hong Kong suggests that this control policy does not effectively address secondary pollution, and that a coordinated multiregional program is required

    Partitioning of Phenylalanine Ammonia-lyase from Rhodotorula glutinis in Aqueous Two-phase Systems of PEG/salts

    Get PDF
    In this work, the partitioning of phenylalanine ammonia-lyase was investigated in different systems of PEG1000, PEG2000, PEG3350, PEG6000 and PEG8000 with (NH4)2SO4, Na2SO4, Na2CO3 and potassium phosphate. The results showed that the partition of phenylalanine ammonia-lyase in PEG/salt aqueous two-phase systems was mainly influenced by hydrophobicity, excluded volume effect and salting-out effect; compared with other PEG/salt systems, PEG1000/Na2SO4 was the most effective for phenylalanine ammonia-lyase partitioning. The result further supports that PEG/salt aqueous two-phase system provides a new and applicable route for the purification of phenylalanine ammonia-lyase, as shown in our published paper.1

    Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China

    Get PDF
    In a study conducted in late summer 2000, a wide range of volatile organic compounds (VOCs) were measured throughout five target cities in the Pearl River Delta (PRD) region of south China. Twenty-eight nonmethane hydrocarbons (NMHCs; 13 saturated, 9 unsaturated, and 6 aromatic) are discussed. The effect of rapid industrialization was studied for three categories of landuse in the PRD: Industrial, industrial-urban, and industrial-suburban. The highest VOC mixing ratios were observed in industrial areas. Despite its relatively short atmospheric lifetime (2-3 days), toluene, which is largely emitted from industrial solvent use and vehicular emissions, was the most abundant NMHC quantified. Ethane, ethene, ethyne, propane, n-butane, i-pentane, benzene, and m-xylene were the next most abundant VOCs. Direct emissions from industrial activities were found to greatly impact the air quality in nearby neighborhoods. These emissions lead to large concentration variations for many VOCs in the five PRD study cities. Good correlations between isoprene and several short-lived combustion products were found in industrial areas, suggesting that in addition to biogenic sources, anthropogenic emissions may contribute to urban isoprene levels. This study provides a snapshot of industrial, industrial-urban, and industrial-suburban NMHCs in the five most industrially developed cities of the PRD. Increased impact of industrial activities on PRD air quality due to the rapid spread of industry from urban to suburban and rural areas, and the decrease of farmland, is expected to continue until effective emission standards are implemented. Copyright 2006 by the American Geophysical Union

    Identification of critical combination of vulnerable links in transportation networks – a global optimisation approach

    Get PDF
    This paper presents a global optimisation framework for identifying the most critical combination of vulnerable links in a transportation network. The problem is formulated as a mixed-integer non-linear programme with equilibrium constraints, aiming to determine the combination of links whose deterioration would induce the most increase in total travel cost in the network. A global optimisation solution method applying a piecewise linearisation approach and range-reduction technique is developed to solve the model. From the numerical results, it is interesting and counterintuitive to note that the set of most vulnerable links when simultaneous multiple-link failure occurs is not simply the combination of the most vulnerable links with single-link failure, and the links in the critical combination of vulnerable links are not necessarily connected or even in the neighbourhood of each other. The numerical results also show that the ranking of vulnerable links will be significantly affected by certain input parameters

    A novel online data-driven algorithm for detecting UAV navigation sensor faults

    No full text
    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate
    corecore